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2 Sektion Physik der Universität München, Theresienstr. 37, 80333 München, Germany
3 Deutsches Elektronen-Synchrotron, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Germany
4 Theory Division, CERN, 1211 Geneva 23, Switzerland

Received: 3 March 2003 /
Published online: 26 September 2003 – c© Springer-Verlag / Società Italiana di Fisica 2003

Abstract. We present the complete electroweak one-loop corrections to top-pair production at a linear e+e−

collider in the continuum region. Besides weak and photonic virtual corrections, real hard bremsstrahlung
with simple realistic kinematical cuts is included. For the bremsstrahlung we advocate a semi-analyti-
cal approach with a high numerical accuracy. The virtual corrections are parameterized through six
independent form factors, suitable for Monte Carlo implementation. Alternatively, our numerical package
Topfit, a stand-alone code, can be utilized for the calculation of both differential and integrated cross
sections as well as forward-backward asymmetries.

1 Introduction

At a future linear e+e− collider with a center-of-mass en-
ergy above 350GeV, one of the most important reactions
will be top-pair production well above the threshold (i.e.
in the continuum region),

e+ + e− → t+ t̄ . (1.1)

Several hundred thousand events are expected, and the an-
ticipated accuracy of the corresponding theoretical predic-
tions should be around a few per mille. Of course, it is not
only the two-fermion production process (1.1), with elec-
troweak radiative corrections (EWRC) and QCD correc-
tions to the final state, that has to be calculated with high
precision. Additionally the decay of the top quarks and a
variety of quite different radiative corrections such as real
photonic bremsstrahlung and other non-factorizing con-
tributions to six-fermion production and beamstrahlung
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have to be considered. Possible new physics effects also
have to be taken into account. For more details on the
general subject of top physics, we refer the reader to [1]
and, for top-pair production, to the recent collider stud-
ies [2–4] and references therein.

The electroweak one-loop corrections will be a central
building block in any precision study of top-pair produc-
tion. Also it might well be that for most of the physics
a phenomenological study of the two-particle (top-pair)
production cross section will be sufficient, thus avoiding
having to deal too much with many-particle final states
observed in the detectors [5–9]. For these reasons, we re-
calculated the complete set of electroweak contributions,
including real hard photon corrections. Several studies on
this topic are already available in the literature. In [10,11],
the complete O(α) corrections, including hard photon ra-
diation, are calculated. The virtual and soft photon cor-
rections both in the standard model and in the minimal
supersymmetric standard model are determined in [12,13],
and (only) in the standard model in [14]. Experience proves
that so far it was difficult to get a satisfactory numerical
comparison based on articles or computer codes without
contacting the corresponding authors. Due to the impor-
tance of the process, for future applications, it is therefore
necessary to provide a common basis and accessible doc-
umentation. Thus we aim, with the present write-up, to
carefully document the one-loop radiative corrections for
the process (1.1)1, with the publicly available Fortran pro-

1 The situation with massless fermion-pair production is
much better due to the efforts related to LEP physics; see
[15,16] and the references therein
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Fig. 2.1. Feynman diagrams for the process e+e− → tt̄ in
Born approximation

gram Topfit [17,18], and with the sample Fortran outputs.
In the mean time, we compared our calculations in detail
with the results of two collaborations [19,20].2

In this article, we briefly sketch our calculation and
present some typical numerical results applicable at typical
Linear Collider energies.

2 Conventions and cross sections

In lowest order perturbation theory the process e+e− → tt̄
can be illustrated by the two Feynman diagrams of Fig. 2.1.

For convenience we introduce the following abbrevia-
tions:

p5 = p1 + p2 = −p3 − p4, p25 = t , (2.1)

p6 = p2 + p3 = −p1 − p4, p26 = s , (2.2)

p7 = p2 + p4 = −p1 − p3, p27 = u . (2.3)

In the Feynman gauge the matrix elements correspond-
ing to Fig. 2.1 are

Mγ =
e2

s
QeQt[v̄(p4)γµu(p1)] × [ū(−p2)γµv(−p3)] , (2.4)

MZ =
e2

s−MZ
2 + iMZΓZ

[v̄(p4)γµ (ve − aeγ5)u(p1)]

×[ū(−p2)γµ (vt − atγ5)v(−p3)] , (2.5)

with

vf =
T 3f − 2Qf sin2 θW
2sin θWcos θW

, (2.6)

af =
T 3f

2sin θWcos θW
, (2.7)

where T 3f is the quantum number corresponding to the
third component of the weak isospin, eQf the electromag-
netic charge, and θW the weak mixing angle.

We parameterize the radiative corrections by means of
form factors. Defining the following four matrix elements:

Mij
1 =

[
v̄(p4)γµGiu(p1)

]×[ū(−p2)γµGjv(−p3)
]
,

i, j = 1, 5 , (2.8)
2 Another series of numerical comparisons with the authors

of [14] was started in September 2001; see also [21]

with G1 = 1 and G5 = γ5, the Born amplitude can be
written in a compact form:

MB = Mγ + MZ =
∑

i,j=1,5
F ij,B
1 Mij

1 . (2.9)

The form factors are

F 11,B
1 = vevt

e2

s−MZ
2 + iMZΓZ

+QeQt
e2

s

≡ F 11,B,Z
1 + F 11,B,γ

1 , (2.10)

F 15,B
1 = −veat e2

s−MZ
2 + iMZΓZ

, (2.11)

F 51,B
1 = −vtae e2

s−MZ
2 + iMZΓZ

, (2.12)

F 55,B
1 = aeat

e2

s−MZ
2 + iMZΓZ

. (2.13)

Besides (2.8), we find at one-loop level three further
basic matrix element structures (in the limit of vanishing
electron mass):

M1loop =
4∑

a=1

∑
i,j=1,5

F ij,1loop
a Mij

a , (2.14)

with

Mij
1 = γµGi ⊗ γµGj , (2.15)

Mij
2 = p/2Gi ⊗ p/4Gj , (2.16)

Mij
3 = p/2 Gi ⊗ Gj , (2.17)

Mij
4 = γµGi ⊗ γµ p/4Gj , (2.18)

and respectively sixteen scalar form factors F ij
a in total.

An alternative notion uses the helicity structures,

MLR
1 = γµL ⊗ γµR (2.19)

etc., with L,R = (1 ∓ γ5)/2. The interferences of these
matrix elements with the Born amplitude have to be cal-
culated. Only six of these interferences are independent,
e.g. Mij

1 , M3
11 and M3

51, 3 i.e. we have the following 10
equivalences:

4M2
11 ↔ (T − U)M1

11 + sM1
55 , (2.20)

4M2
15 ↔ (T − U)M1

15 + (s− 4m2
t )M1

51 − 4mtM3
51 ,

(2.21)

4M2
51 ↔ (T − U)M1

51 + sM1
15 , (2.22)

4M2
55 ↔ (T − U)M1

55 + (s− 4m2
t )M1

11 − 4mtM3
11 ,

(2.23)
3 We are grateful to D. Bardin and P. Christova for drawing

our attention to this simplification
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M3
15 ↔ 0 , (2.24)

M3
55 ↔ 0 , (2.25)

M4
55 ↔ −M4

11 ↔ M3
11 +mtM1

11 , (2.26)

M4
15 ↔ −M4

51 ↔ M3
51 +mtM1

51 . (2.27)

In the massless limit (mt → 0), only M1 and M2 will
contribute to the cross section, and it can be expressed
in terms of the Born-like structures M1 exclusively. We
introduce the variables

T = m2
e +m

2
t − t 	 s

2
(1 − β cos θ) , (2.28)

U = m2
e +m

2
t − u 	 s

2
(1 + β cos θ) , (2.29)

βt = β =
√
1 − 4m2

t/s . (2.30)

Based on the relations (2.20) to (2.27) the virtual
corrections can be expressed in terms of six independent,
modified, dimensionless form factors F̂ ij

1 , F̂
11
3 , F̂

51
3 :

F̂ 11
1 =

[
F 11
1 +

1
4
(u− t)F 11

2 − 1
4
(u+ t+ 2m2

t )F
55
2

+mt(F 55
4 − F 11

4 )
]
, (2.31)

F̂ 15
1 =

[
F 15
1 − 1

4
(u+ t− 2m2

t )F
51
2 +

1
4
(u− t)F 15

2

]
,

(2.32)

F̂ 51
1 =

[
F 51
1 +

1
4
(u− t)F 51

2 − 1
4
(u+ t+ 2m2

t )F
15
2

+mt(F 15
4 − F 51

4 )
]
, (2.33)

F̂ 55
1 =

[
F 55
1 − 1

4
(u+ t− 2m2

t )F
11
2 +

1
4
(u− t)F 55

2

]
,

(2.34)

F̂ 11
3 = [F 11

3 − F 11
4 + F 55

4 −mtF
55
2 ] , (2.35)

F̂ 51
3 = [F 51

3 + F 15
4 − F 51

4 −mtF
15
2 ] . (2.36)

The resulting cross-section formula is

dσ
d cos θ

=

πα2

2s
ctβ2
e

[
(u2 + t2 + 2m2

t s)
(
F̄ 11
1 F̄

11,B∗
1 + F̄ 51

1 F̄
51,B∗
1

)
+ (u2 + t2 − 2m2

t s)
(
F̄ 15
1 F̄

15,B∗
1 + F̄ 55

1 F̄
55,B∗
1

)
+ (u2 − t2)

×
(
F̄ 55
1 F̄

11,B∗
1 + F̄ 15

1 F̄
15,B∗
1 + F̄ 51

1 F̄
51,B∗
1 + F̄ 11

1 F̄
55,B∗
1

)
+ 2mt(tu−m4

t )
(
F̄ 11
3 F̄

11,B∗
1 + F̄ 51

3 F̄
51,B∗
1

)]
, (2.37)

where the dimensionless form factors are

F̄ ij,B∗
1 =

s

e2
F ij,B∗
1 , (2.38)

F̄ ij
a =

s

e2

[
1
2
δa,1F

ij,B
1 +

1
16π2

F̂ ij,1loop
a

]
(2.39)

and ct = 3, α = e2/4π. The F̄ ij
a are defined so that double

counting for the Born contributions F ij,B
1 is avoided. The

factor 1/(16π2) is conventional.
In the numerical program, helicity form factors are cal-

culated as well. They are defined as follows:

FLL
i =

1
4
[
F 11
i − F 15

i − F 51
i + F 55

i

]
, (2.40)

FLR
i =

1
4
[
F 11
i + F 15

i − F 51
i − F 55

i

]
, (2.41)

FRL
i =

1
4
[
F 11
i − F 15

i + F 51
i − F 55

i

]
, (2.42)

FRR
i =

1
4
[
F 11
i + F 15

i + F 51
i + F 55

i

]
, i = 1, . . . , 4.

(2.43)

At the end of this introductory section, we would like to
give the relation of our form factors to those used in the
literature for pair production of massless fermions. In that
case, only the four form factors F̂ ij

1 contribute. They have
to replace, in the massless limit, the form factors ρ and
κf , which are conventionally used to renormalize the muon
decay constant and the weakmixing angle and are precisely
defined in [22, 23]. We rewrite the matrix element M1 in
such a way that it gives exactly the Born Z amplitude (2.5)
when the four form factors ρet, κe, κt, κet are set equal to
1:

M1 =
∑

i,j=1,5

F̂ ij
1 Mij

1 ≡
∑

i,j=L,R

F̂ ij
1 Mij

1

=
4e2aeat

s−MZ
2 + iMZΓZ

× ρet
[
(γµL ⊗ γµL) − |Qe|sin2 θWκe(γµ ⊗ γµL)

−|Qt|sin2 θWκt(γµL ⊗ γµ)
+|QtQe|sin4 θWκet(γµ ⊗ γµ)

]
. (2.44)

From here, it is easy to derive the relations between the
form factors F̂ ij

1 in an (L,R) or (1,5) basis and ρet, κe, κt,
κet, respectively:

F̂LL
1 =

4e2aeat
s−MZ

2 + iMZΓZ

× ρet
(
1 − |Qe|sin2 θWκe

−|Qt|sin2 θWκt + |QtQe|sin4 θWκet
)
, (2.45)

F̂LR
1 =

4e2aeat
s−MZ

2 + iMZΓZ

× ρet
(−|Qt|sin2 θWκt + |QtQe|sin4 θWκet

)
, (2.46)
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F̂RL
1 =

4e2aeat
s−MZ

2 + iMZΓZ

× ρet
(−|Qe|sin2 θWκe + |QtQe|sin4 θWκet

)
, (2.47)

F̂RR
1 =

4e2aeat
s−MZ

2 + iMZΓZ
ρet
(|QtQe|sin4 θWκet

)
..

(2.48)

Three process-dependent effective weak mixing angles
sin2 θW

eff
and the weak coupling strength κeff are obtained

by inverting these relations:

κeff = ρet (2.49)

=
s−MZ

2 + iMZΓZ
4e2aeat

(
F̂LL
1 − F̂LR

1 − F̂RL
1 + F̂RR

1

)
,

sin2 θW
eff,e

(2.50)

= κesin2 θW = − 1
|Qe|

(
F̂RR
1 − F̂RL

1

)
(
F̂LL
1 − F̂LR

1 − F̂RL
1 + F̂RR

1

) ,
sin2 θW

eff,t
= κtsin2 θW

= − 1
|Qt|

(
F̂RR
1 − F̂LR

1

)
(
F̂LL
1 − F̂LR

1 − F̂RL
1 + F̂RR

1

) , (2.51)

(sin2 θW
eff,e t

)2 (2.52)

= κetsin4 θW =
1

|QeQt|
F̂RR
1(

F̂LL
1 − F̂LR

1 − F̂RL
1 + F̂RR

1

) .
For the simplest approximations with factorizing, univer-
sal weak corrections, the κe, κt, and

√
κet become equal,

real and constant (independent of process and kinemat-
ics); for more details see for instance the discussion of the
weak corrections in [15,16] and references therein. There,
also the important influence of higher order corrections is
considered.

3 Virtual corrections

The virtual corrections come from self-energy insertions,
vertex and box diagrams, and from renormalization. A
complete list of the contributing diagrams may be found
in [19]. By means of the package DIANA [24–26] we gen-
erated useful graphical presentations of the diagrams and
the input for subsequent FORM [27, 28] manipulations.
With the DIANA output (FORM input), we performed
two independent calculations of the virtual form factors,
both using the ’t Hooft-Feynman gauge.

For the final numerical evaluations we used two Fortran
packages: FF [29] and LoopTools [30]. Both have been
taken from the corresponding homepages, and LoopTools
was slightly adapted: one infrared C0 was added and the
DB1 was used only for photon mass λ = 0.

In the package FF, the Passarino-Veltman tensor de-
composition of the amplitudes [31] is defined in terms of
the external momenta of the diagrams, while in LoopTools
this decomposition is performed in terms of internal mo-
menta and the latter are later expressed in terms of the
external ones. The resulting linear relation between the
corresponding form factors is given in AppendixA. Both
the ultraviolet (UV) and the infrared (IR) divergences are
treated by dimensional regularization, introducing the di-
mension d = 4 − 2ε and parameterizing the infinities as
poles in ε. The UV divergences have to be eliminated by
renormalization on the amplitude level, while the IR ones
can only be eliminated on the cross-section level by includ-
ing the emission of soft photons. For the IR divergences
we have alternatively introduced a finite photon mass, as
is foreseen in FF, yielding a logarithmic singularity in this
mass. Agreement to high precision was achieved for the
two approaches.

Because the calculation of one-loop corrections for two-
fermion production is well known, we do not present a
detailed prescription of the calculations. We perform the
renormalization closely following [32]. On the other hand,
we want to fix some cornerstones and sketch the renor-
malization and show the UV-divergent parts of all the
contributing diagrams, such that their cancellations can
be deduced. The treatment of the IR divergences will be
discussed in more detail because of the interplay with real
photonic corrections. Finally, concerning the finite parts,
we refer to the Fortran program Topfit. We only mention
that we did not perform a complete reduction of the var-
ious scalar functions to A0, B0, C0, and D0, since this is
not needed for a purely numerical evaluation.

3.1 The self-energy diagrams

We have to renormalize the UV singularities of the self-
energies of the photon and the Z boson, and also that of
their mixing. Since the counterterms from wave-function
and parameter renormalization must exhibit Born-like
structures, it is clear from the very beginning that a can-
cellation of UV divergences can only occur in terms of sin-
gle propagator poles. The double poles, which originally
occur in the self-energy diagrams, are cancelled by mass
renormalization. This we want to stress for the following,
by allowing only single poles in the self-energy contribu-
tions. Thus the photon self-energy and the Z self-energy
diagrams take the form

Sγ =
Σγγ

s
Mγ , (3.1)

SZ =
ΣZZ

s−MZ
2 MZ . (3.2)

In the γ–Z mixing diagrams, a partial fraction decompo-
sition of the product (1/s)1/(s−MZ

2) is performed, but
no subtraction:

SγZ = −e2QeΣγZ
1
MZ

2

(
1

s−MZ
2 − 1

s

)
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×γµ × γµ(vt − atγ5) , (3.3)

SZγ = −e2QtΣγZ
1
MZ

2

(
1

s−MZ
2 − 1

s

)
×γµ(ve − aeγ5) × γµ . (3.4)

We give the UV-divergent parts of the renormalized self-
energies (for definitions, see AppendixB):

Σren,UV
γγ = e2s

(
−23

3

)
1
ε
, (3.5)

Σren,UV
Zγ = Σren,UV

γZ =
e2

2sin θWcos θW

×
(
46
3
cos2 θWs− 4MW

2 − 41
3
s

)
1
ε
, (3.6)

Σren,UV
ZZ = e2(s−MZ

2) (3.7)

×
(
23
3

+
6

sin2 θW
− 41

6cos2 θWsin2 θW

)
1
ε
.

Three families of fermions are assumed. The UV-divergent
terms of the self-energies are independent of the fermion
masses, but this is, of course, not true for the finite con-
tributions.

The form factors are easily deduced from the above
representations. The photon self-energy, for instance, con-
tributes to F 11

1 only:

F̂ 11,γγ
1 = F 11,B,γγ

1
Σren

γγ

s
≡ QeQt

e2

s2
Σren

γγ . (3.8)

3.2 The vertex diagrams

From the initial-state vertex corrections, form factorsF ij,V
1 ,

V = γ, Z, arise, and from the final vertices F ij,V
1 and F ij,V

3 ,
the latter being proportional to mt. There are UV diver-
gences from the vertex diagrams in F ij

1 : again only Born-
like amplitudes are UV-divergent.

The divergent parts of vertices with a photon or Z
boson in the s-channel, correspondingly, are4

V UV
γ =

(
e2

2sW

)2 1
s

1
ε

(3.9)

×
[
f11,γ1 γµ ⊗ γµ + f15,γ1 γµ ⊗ γµγ5 + f51,γ1 γµγ5 ⊗ γµ

]
,

V UV
Z =

(
e2

2s2WcW

)2 1
s−MZ

2
1
ε

(3.10)

×
[
f11,Z1 γµ ⊗ γµ + f15,Z1 γµ ⊗ γµγ5 + f51,Z1 γµγ5 ⊗ γµ

+f55,Z1 γµγ5 ⊗ γµγ5
]
.

4 To compactify the following formula we introduce the ab-
breviations sin θW = sW and cos θW = cW

The explicit expressions from the initial and final photonic
vertices are

f11,γ1 =
(

−17
27

1
c2W

− 64
27

− m2
t

MW
2 − 1

3
m2

b

MW
2

)
fin

−
(
5
3

1
c2W

+
2
3

)
ini
, (3.11)

f15,γ1 =
(
32
9

− 5
9

1
c2W

− 1
3
m2

t

MW
2 +

1
3
m2

b

MW
2

)
fin
, (3.12)

f51,γ1 =
(
10
3

− 1
c2W

)
ini
. (3.13)

For the Z boson in the s-channel we only give the sum of
the initial- and final-state fermion vertices:

f11,Z1 =
973
216

− 25
18

1
c2W

− 9
16

m2
t

MW
2 − 1

16
m2

b

MW
2 − c2W

m2
t

MZ
2

− 1
3
c2W

m2
b

MZ
2 − 157

108
c2W − 82

27
c4W +

3
2
m2

t

MZ
2 +

1
3
m2

b

MZ
2 ,

(3.14)

f15,Z1 =
21
8

− 1
c2W

− 7
16

m2
t

MW
2 +

1
16

m2
b

MW
2 − 1

3
c2W

m2
t

MZ
2

+
1
3
c2W

m2
b

MZ
2 − 137

36
c2W +

32
9
c4W +

5
6
m2

t

MZ
2 − 1

3
m2

b

MZ
2 ,

(3.15)

f51,Z1 =
665
216

− 95
108

1
c2W

− 3
16

m2
t

MW
2 − 1

48
m2

b

MW
2

− 449
108
c2W +

10
3
c4W +

1
4
m2

t

MZ
2 +

1
12
m2

b

MZ
2 , (3.16)

f55,Z1 =
97
72

− 7
12

1
c2W

− 7
48

m2
t

MW
2 +

1
48

m2
b

MW
2

− 77
36
c2W +

1
12
m2

t

MZ
2 − 1

12
m2

b

MZ
2 . (3.17)

The resulting form factors can be extracted, e.g.

F̂ ij,γ,UV
1 = (e4)/(4s2Wsε)f

ij,γ
1 . (3.18)

3.3 The box diagrams

ZZ, Zγ and γZ box diagrams contribute to all form fac-
tors F ij

1 to F ij
4 introduced in (2.14) to (2.18), while the

WW box diagram contributes only to F ij
1 . The pure pho-

tonic box diagrams contribute only to F 11
a and F 55

a . Simple
power counting shows that there are no UV divergences
from the boxes. The IR divergences will be discussed in
Sect. 3.5 and AppendixC.
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3.4 The counterterm contributions

Finally we have to take into account the contribution from
the counterterms of AppendixB, where we also introduce
some of the notation to be used in the following. With
these the photon exchange becomes

Cγ =[γµ ⊗ γµ(za,t + zb,tγ5) + γµ(za,e + zb,eγ5) ⊗ γµ

+γµ ⊗ γµ2δe
e

]
QeQt

e2

s
. (3.19)

Analogously, for the Z exchange

CZ ={γµ(ve − aeγ5) ⊗ γµ(vt − atγ5)(za,t + zb,tγ5)
+ γµ(ve − aeγ5)(za,e + zb,eγ5) ⊗ γµ(vt − atγ5)

− γµ ⊗ γµ(vt − atγ5) Qe

sWcW
δs2W

− γµ(ve − aeγ5) ⊗ γµ Qt

sWcW
δs2W

+ γµ(ve − aeγ5) ⊗ γµ(vt − atγ5)

×
[
2

δe
e

+
(

1
c2W

− 1
s2W

)
δs2W

]}
e2

s−MZ
2 . (3.20)

It is again easy to collect from the above expressions
the corresponding contributions to the form factors F 11

1 to
F 55
1 . The contributions to, say, F 11

1 from the counterterms
are

F̂ 11,ct
1 =

[
2

δe
e

+ za,t + za,e

]
F 11,B,γ
1

+
[
2

δe
e

+ za,t + za,e +
(

1
c2W

− 1
s2W

)
δs2W

]
F 11,B,Z
1

− (vtQe + veQt)
δs2W
sW cW

e2

s−MZ
2 . (3.21)

The resulting 1/ε terms may be read off in Appendix B.
The sum of all the 1/ε terms listed in the foregoing

subsections for the form factors F ij
1 , i, j = 1, . . . , 4, has

been shown to finally vanish separately for the photon
and the Z pole of the s-channel propagator:

F̂ ij,UV
1 =

[
F̂ ij,γγ
1 + F̂ ij,γZ

1 + F̂ ij,Zγ
1 + F̂ ij,ZZ

1

+ F̂ ij,γ
1 + F̂ ij,Z

1 + F̂ ij,ct
1

]
UV

= 0 . (3.22)

3.5 Infrared divergences

In Topfit, we have incorporated two weak libraries. One
uses the package LoopTools [30], and the other one the
package FF [29]. With these two options, we have a variety
of internal cross checks at our disposal.

The photonic virtual corrections contain infrared di-
vergences. They appear as singular behavior of classes of

one-loop functions. One may follow several strategies to
handle them in a numerical calculation. The simplest one
is to blindly give the task to the library for numerical cal-
culation of the one-loop functions and then control the in-
frared stability numerically in the Fortran program. Both
packages allow for this approach; LoopTools with dimen-
sional regularization or with a finite photon mass, while
FF treats loop functions with finite photon mass only.

In addition, we checked the IR stability in two ways ex-
plicitly. In the library based on FF, we simply took a small
but finite photon mass and directly applied FF without
simplifying any tensor functions. Several analytic checks
were also performed. In the other one, we isolated in all the
scalar functions the IR divergence explicitly and the can-
cellations with the divergences from bremsstrahlung cor-
rections (see Sect. 4.3) were controlled both analytically
and numerically.

In AppendixC, we fix the notation and discuss the
basics of the treatment of IR divergences. In the rest of
this section, we simply give a list of the divergent parts of
the form factors.

From the renormalization of the fermion self-energies
(wave-function renormalization factors) we have

F̂
ij,Zf ,IR
1 = −4e2Q2

fm
2
fDB1(m2

f ;m
2
f , 0)F

ij,B
1 . (3.23)

From the vertex corrections (index f = e, t):

F̂
ij,Vf ,IR
1 (3.24)

= −2e2Q2
f (s− 2m2

f )C0(m
2
f , s,m

2
f ; 0,m

2
f ,m

2
f )F

ij,B
1 .

These form factors combine in the cross section with
the initial- and final-state soft photon corrections to an
infrared-finite contribution. For instance, the pure pho-
tonic parts contribute only to F̄ 11

1 . The resulting IR-diver-
gent cross-section contribution in (2.37),

dσf,IR

d cos θ
=

dσB

d cos θ
α

π
Q2

f δIRf , (3.25)

with

δIRf = 2 ln
mf

λ

(
1 +

s− 2m2
f

sβf
ln

1 − βf
1 + βf

)
, (3.26)

is compensated with (4.76) and (4.77).
A little more involved are the box diagram contribu-

tions. As a typical example, we show the photonic box
parts. The direct box gives

F 11,dγ,IR
1 = −F 55,dγ,IR

1 = (t− u− s)Gd , (3.27)

F 11,dγ,IR
2 = F 55,dγ,IR

2 = −4Gd , (3.28)

F 55,dγ,IR
4 = −4mtGd , (3.29)

with

Gd = −e2QeQt C0(m2
e, t,m

2
t ; 0,m

2
e,m

2
t ) F

11,B,γ
1 . (3.30)
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From these expressions, the form factors (2.32) to (2.35)
get contributions

F̂ 11,dγ,IR
1 (3.31)

= +4T e2QeQt C0(m2
e, t,m

2
t ; 0,m

2
e,m

2
t ) F

11,B,γ
1 ,

and all the others vanish. Analogously, from the crossed
photonic box diagram we have

F 11,cγ,IR
1 = +F 155,cγ,IR

1 = −2(u−m2
t )Gc , (3.32)

F 11,cγ,IR
2 = −F 55,cγ,IR

2 = −4Gc , (3.33)

F 55,cγ,IR
4 = +4mtGc , (3.34)

with

Gc = −e2QeQt C0(m2
e, u,m

2
t ; 0,m

2
e,m

2
t ) F

11,B,γ
1 .

(3.35)

From these expressions, the form factors (2.32) to (2.35)
get contributions

F̂ 11,dγ,IR
1 (3.36)

= −4U e2QeQt C0(m2
e, u,m

2
t ; 0,m

2
e,m

2
t ) F

11,B,γ
1 ,

and again all the other ones vanish.
The resulting cross-section contributions become

dσγ,IR

d cos θ
(3.37)

=
dσB

d cos θ
4
α

π
QeQt ln

1
λ

(
ln
memt

T
− ln

memt

U

)
,

and are compensated with (4.78).
In AppendixC we show the relevant scalar functions

explicitly.

4 Real photonic radiative corrections

4.1 The three-particle phase space

The reaction

e+(p4) + e−(p1) → t(q2) + t̄(q3) + γ(p), (4.1)

with

dσ =
1

2sβ0
|M|2 · (2π)4δ4(p1 + p4 − q2 − q3 − p)

× d3q2
(2π)32Et

d3q3
(2π)32Et̄

d3p
(2π)32Eγ

, (4.2)

is the one which in reality always takes place, even if for
soft photons the “elastic” Born cross section can be a good
approximation without taking into account the radiated

photons. Here we introduce the final-state phase-space pa-
rameterization: for convenience of notation, the top physi-
cal momenta q2 = −p2, q3 = −p3 are used here.We will not
neglect the electron mass systematically, p21 = p24 = m2

e,
and β0 =

√
1 − 4m2

e/s. Our semi-analytical integration
approach with physically accessible observables as inte-
gration variables may be used to set benchmarks and to
control the numerical precision to more than four digits.
Their choice is constrained by the observables we want to
predict, notably the angular distribution and certain cross-
section asymmetries. Basically we follow the approach pro-
posed in [33,34] and extend the required formulae to the
massive fermion case.

There is not too much found in the literature for the
radiative production of massive fermion pairs. Thus, we
will discuss the kinematical details with some care, since
they define the integration boundaries of our numerical
integration program.

In (2.1) and (2.3) we defined t and u for two-particle
production. With the additional photon in the final state,
we have to be more specific and will use the following
definitions:

T = 2p4q3 , (4.3)

U = 2p1q3 . (4.4)

Additionally, the following invariants will be used:

s′ = (q2 + q3)2 , (4.5)

Z1,2 = 2pp1,4 , (4.6)

V1,2 = 2pq2,3 . (4.7)

The squares of all three-momenta in the center-of-mass
system can be expressed in terms of a set of λ functions:

4s|q2|2 = λ1 ≡ λ[(p1 + p4)2, (q3 + p)2, q22]
= (s− V2)2 − 4m2

t s , (4.8)

4s|q3|2 = λ2 ≡ λ[(p1 + p4)2, (q2 + p)2, q23]
= (s′ + V2)2 − 4m2

t s , (4.9)

4s|p1|2 = 4s|p4|2 = λs ≡ λ[(p1 + p4)2, p21, p24]
= s2 − 4m2

es , (4.10)

4s|p|2 = λp ≡ λ[(p1 + p4)2, (q2 + q3)2, p2]
= (s− s′)2 , (4.11)

where we use λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz)
and the relation 4p2A|pB |2 = λ[(pA + pB)2, p2A, p

2
B ]|pA=0

for pA = (p1 + p4) = (
√
s, 0, 0, 0).

The phase space of three particles in the final state is
five-dimensional. This means that only five of the ten scalar
products (those introduced already: s, T, U, s′, Zi, Vi, plus
W1,2 = 2p1,4q2) built from the five momenta are indepen-
dent. In fact, the following relations hold

s = s′ + V1 + V2 = s′ + Z1 + Z2
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= V2 +W1 +W2 (4.12)

= V1 + U + T = Z1 +W1 + U . (4.13)

We use the first of relations (4.12) in order to substitute V1
everywhere in favour of V2 as already done in (4.9). Since
we do not consider transversally polarized initial particles,
an integration of the cross section over the corresponding
rotation angle is trivially giving a factor 2π and we are left
with four non-trivial phase-space variables.

For the calculation of the forward-backward asymme-
try, the angle θ between the three-momenta of t̄ and e+ is
used, in accordance with (4.3). Further, the energies Et,
Et̄, and Eγ are “good” variables. As mentioned before,
they can be expressed in terms of the invariants s′ and V2:

Et̄ =
s′ + V2
2
√
s
, (4.14)

Eγ =
s− s′
2
√
s
, (4.15)

Et =
√
s− Eγ − Et̄ =

s− V2
2
√
s
. (4.16)

The scattering angle in the center-of-mass system may
now be expressed by invariants:

T =
s′ + V2

2
− β0

√
λ2

2
cos θ . (4.17)

As will be seen later, the two invariants s′ and V2 also
describe the angles between any pair of final-state parti-
cles. Therefore, we choose them to parameterize the phase
space. Finally, the fourth integration variable will be the
azimuthal angle of the photon φγ .

The coordinate system is chosen such that the t̄ moves
along the z-axis and the beam axis is in the y–z plane.
The four-momenta of all particles can then be written as
follows:

p1 =
√
s

2
(1, 0,−β0 sin θ,−β0 cos θ) , (4.18)

p4 =
√
s

2
(1, 0, β0 sin θ, β0 cos θ) , (4.19)

p = Eγ(1, sin θγ cosφγ , sin θγ sinφγ , cos θγ),

(4.20)

q3 = (Et̄, 0, 0, |q3|) , (4.21)

q2 = p1 + p4 − p− q3 . (4.22)

The φγ and θγ are the azimuthal and polar angles of the
photon. The expression for cos θγ (and also that for |q3|)
can be obtained from (p + q2)2 = (q3)2,

cos θγ =
λ1 − λ2 − λp
2
√
λpλ2

=
s′(s− s′) − V2(s+ s′)

(s− s′)√λ2
, (4.23)

and again depends only on s′ and V2. The differential
bremsstrahlung cross section (4.2) takes the form

dσ =
1

(2π)5
1

2sβ0
|M|2 · π

16s
dφγds′dV2d cos θ

≡ 1
(2π)5

1
2sβ0

|M|2 · πs
16

dφγdrdxd cos θ . (4.24)

In the last step, dimensionless variables are introduced:

x =
V2
s
, (4.25)

r =
s′

s
, (4.26)

rm =
4m2

t

s
. (4.27)

The integration boundaries are either trivial (φγ and cos θ)
or can be found from the condition that the three three-
vectors p, q2, q3 form a triangle with the geometrical
constraint cos2 θγ ≤ 1. The four integration variables vary
within the following regions:

0 ≤ φγ ≤ 2π, (4.28)

x

2x+ rm/2

(
1 + x−

√
(1 − x)2 − rm

)
≤ 1 − r

≤ x

2x+ rm/2

(
1 + x+

√
(1 − x)2 − rm

)
,

(4.29)

0 ≤ x ≤ 1 − √
rm, (4.30)

−1 ≤ cos θ ≤ +1. (4.31)

If the order of integrations over r and x is interchanged,
their boundaries are

1 − r
2

(
1 −

√
1 − rm

r

)
≤ x ≤ 1 − r

2

(
1 +

√
1 − rm

r

)
,

(4.32)

rm ≤ r ≤ 1. (4.33)

The kinematic regions of r and x are shown in Fig. 4.1a
for massless (rm = 0) and in Fig. 4.1b for massive (rm �= 0)
final fermions. At the kinematic boundaries, the three-
momenta p, q2, q3 are parallel. Further, there are three
special points where exactly one of the three three mo-
menta vanishes:

A =
( √

rm
2 − √

rm
, 1 − √

rm

)
, (4.34)

B =
( √

rm
2 − √

rm
, (1 − √

rm)
√
rm

2 − √
rm

)
, (4.35)

C =(1, 0) . (4.36)

At point C the soft photons are located. Section 4.3 is
devoted to their treatment. The t (t̄) are at rest in A (B).
In the massless case, rm = 0, the three points A, B and
C are located at the corners of the kinematic triangle,
A = (0, 1), B = (0, 0), C = (1, 0). From (4.14)–(4.16) it
follows that the photon energy is maximal at the left edge,
coinciding with the x-axis; the fermion energy is maximal
at the lower edge, coinciding with the r-axis; and finally
the energy of the anti-fermion is maximal at the third edge.
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Fig. 4.1a,b. Kinematic region of r and x for a rm = 4m2
t /s = 0 and b rm = 0.2. The energetic cuts are also shown; they are

rE = 2Emin
t /

√
s, rĒ = 2Ēmin

t /
√

s, rω = 1 − 2ω/
√

s = 1 − 2Emin(γ)/
√

s, rγ = 1 − 2Emax(γ)
√

s

4.1.1 Energy cuts

Cuts on the energy of the final-state particles are of im-
portance for two reasons: they are being applied in the
experimental set-ups, and for the photon we have to iden-
tify the soft photon terms in order to combine them with
virtual corrections for a finite net elastic cross section. The
lower hard photon energy (being also the upper soft photon
energy) is

ω = Emin
γ . (4.37)

All three energy cuts are deduced from (4.14) to (4.16).
The photon energy is related to r by

r = 1 − 2Eγ/
√
s , (4.38)

and the limits to be imposed are

rγ = 1 − 2Emax
γ /

√
s ≤ r ≤ 1 − 2ω/

√
s = rω . (4.39)

Constraining the fermion energies leads to cuts on x:

rĒ − r ≡ 2Emin
t̄ /

√
s− r ≤ x ≤ 1 − rE ≡ 1 − 2Emin

t /
√
s.

(4.40)

All the energy cuts are independent of the mass of the final
fermions and of cos θ. They are illustrated in Fig. 4.1. From
(4.40) it can be seen that the derivatives of the kinematic
border at points A and B in Fig. 4.1b (for their definitions
see (4.34) and (4.35)) are 0 and −1.

4.1.2 Angular cuts

The scattering angle θ is the angle between t̄ and e+. This
angle is one of the integration variables and is constrained
directly:

cmin ≤ c ≡ cos θ ≤ cmax. (4.41)

θ ξ θtt−

θ

p(t)

p(t)

p( )γ

γt−

γt

−

Fig. 4.2. Triangle of the three-momenta of fermion, anti-
fermion and photon

Additional angular cuts deserve a study of the (r, x) pa-
rameter space. To be definite, we will always consider the
kinematic bound of r for an arbitrarily chosen value of x.

The directions of the final-state particles define three
angles θtt̄, θtγ , and θt̄γ , as shown in Fig. 4.2. The acollinear-
ity angle ξ is defined by

ξ = π − θtt̄. (4.42)

The condition ξ � 1 restricts the events to a Born-like
kinematics: the fermions are back to back and only soft
photons or photons collinear to one of the final fermions
are allowed. Using the above formulae, the acollinearity
angle ξ is expressed in terms of the invariants x and r:

cos ξ =
λ1 + λ2 − λp

2
√
λ1λ2

(4.43)

=
r(1 + x) − x(1 − x) − rm√

(1 − x)2(r + x)2 − rm[(1 − x)2 + (r + x)2] + r2m
.

Equation (4.43) can readily be derived considering the sca-
lar product q2q3 or alternatively the triangle of the three-
momenta of the final particles in Fig. 4.2, taking into ac-
count the relations (4.11) between the λ functions and the
absolute values of the three-momenta.
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Fig. 4.3a,b. The kinematic region of r and x for different values of the acollinearity angle ξ for a rm = 4m2
t /s = 0 and b

rm = 0.2

For massless fermions, (4.43) is much simpler and de-
scribes a hyperbola with a symmetry axis rotated by an
angle of −π/8 relative to the r-axis. The kinematic regions
for different values of the acollinearity angle are shown in
Fig. 4.3. All lines intersect at the points A and B. For
moderate cuts on the maximum acollinearity angle, the
kinematic area is only constrained for values of x above
the point B, i.e. for x >

√
rm(1−√

rm)/(2−√
rm). In this

case only the lower bound of r is changed. The constraint
to the kinematic region acts in a way similar to a cut to
hard photons. This is clear from the topology of events
with high acollinearity: the fermion and anti-fermion fly
approximately in one direction and must recoil against a
hard photon. For stronger acollinearity cuts, constraints
of the kinematic area arise also for values of x below the
point B. In this case the allowed range for r splits in two
regions. The first region extends from the lower kinematic
border to the smaller solution of (4.43), while the second
region extends from the larger solution of (4.43) to the
upper kinematic border.

The analytic treatment of the acollinearity cut for the
massless case was also discussed in [23,35–37].

In a similar way as explained for the acollinearity angle,
the two angles θtγ and θt̄γ can be expressed in terms of
the two invariants r and x:

cos θtγ =
λ2 − λ1 − λp
2
√
λ1λp

=
r(1 + x) − (1 − x)

(1 − r)√(1 − x)2 − rm
, (4.44)

cos θt̄γ ≡ cos θγ =
λ1 − λ2 − λp
2
√
λ2λp

=
−x(1 + r) + r(1 − r)
(1 − r)√(x+ r)2 − rm

. (4.45)

Although physically the situation for a cut on θtγ is equiv-
alent to a cut on θt̄γ , the symmetry is broken because we
had to make a choice between V1 and V2. The constraint on
θtγ leads to a quadratic equation in x and r, while that for
θt̄γ is quadratic in x and of fourth order in r. In the mass-
less case, the constraints to θtγ become a bilinear equation
in r and x, describing a hyperbola with a symmetry axis,
which is rotated by an angle π/4 relative to the r-axis. The
massless limit of (4.45) leads to a constraint on θt̄γ , which
is linear in x and quadratic in r, describing a hyperbola
with a symmetry axis, which is rotated by an angle of π/8
relative to the x-axis.

The kinematic regions for different values of the angle
θtγ are shown in Fig. 4.4. All lines intersect at the points
A and C. The exclusion of events with small angles θtγ
excludes regions near the edge x = 1− r. These kinematic
regions correspond to events with large anti-fermion en-
ergies, (compare Fig. 4.1). Technically, a constraint of the
angle θtγ from below changes the upper bound of r in the
kinematic region for a fixed x. The lower bound of r is
unchanged by this cut.

Finally, the kinematic regions for different values of
the angle θt̄γ are shown in Fig. 4.5. All lines intersect at
the points B and C. The exclusion of events with small
angles θt̄γ excludes regions near the r-axis. These kine-
matic regions correspond to events with large fermion en-
ergies, (compare Fig. 4.2). Technically, a constraint of the
angle θt̄γ from below affects the kinematic region only for
some x below a certain value. For these x and for mass-
less fermions, the integration region of r is split into two
regions. The first region extends from the lower kinematic
border to the smaller solution of (4.45), and the second
one extends from the larger solution of (4.45) to the upper
kinematic border. For massive fermions, the cutting out
of small angles θt̄γ changes only the lower bound of r as
far as x is below the point B. For a harder cut on θt̄γ ,
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Fig. 4.4a,b. The kinematic region of r and x for different values of the angle θtγ and for a rm = 4m2
t /s = 0 and b rm = 0.2
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Fig. 4.5a,b. The kinematic region of r and x for different values of the angle θt̄γ and for a rm = 4m2
t /s = 0 and b rm = 0.2

the kinematic region is also affected for values of x, larger
than the x coordinate of the point B. For a fixed x and
finite mt, two regions of r near the kinematic border are
then allowed, while some region in the “middle” is cut out
by the constraint. This is similar to the situation in the
massless case.

4.2 Radiative differential cross sections

For massless fermions, typically a threefold analytical inte-
gration of the radiative contributions to fermion-pair pro-
duction with realistic cuts may be performed, see [23,35,36]
and references quoted therein. For massive pair produc-
tion, everything becomes non-trivial and, in the end, we

decided to perform only the first integration analytically,
the one over φγ . This leaves three integrations at most for
a numerical treatment. Our practice proved that the ac-
curacy and speed are absolutely satisfactory for our needs
of calculating benchmarks and physics case studies.

For these reasons, and in order to make everything
well-defined, we now have to collect the singly analyti-
cally integrated contributions to be used in a subsequent
numerical calculation.

We will use a notation for the couplings with some
flexibility not needed in the Born case:

V (s, s′) =
1
2

e
{∑

m,n

[χm(s)χ∗
n(s

′) + χm(s′)χ∗
n(s)]
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× [ve(m)v∗
e(n) + ae(m)a∗

e(n)]

× [vf (m)v∗
f (n) + af (m)a∗

f (n)
]}
, (4.46)

A(s, s′) =
1
2

e
{∑

m,n

[χm(s)χ∗
n(s

′) + χm(s′)χ∗
n(s)]

× [ve(m)a∗
e(n) + ae(m)v∗

e(n)]

× [vf (m)a∗
f (n) + af (m)v∗

f (n)
]}
, (4.47)

C(s, s′) = 2
e
{∑

m,n

[χm(s)χ∗
n(s

′) + χm(s′)χ∗
n(s)]

× [ve(m)v∗
e(n) + ae(m)a∗

e(n)]

× af (m)a∗
f (n)

}
, (4.48)

Ĉ(s, s′) = 
e
{∑

m,n

[χm(s)χ∗
n(s

′) − χm(s′)χ∗
n(s)]

× [ve(m)a∗
e(n) + ae(m)v∗

e(n)]

× [vf (m)a∗
f (n) − af (m)v∗

f (n)
]}
, (4.49)

where we use vf (γ) = Qf , af (γ) = 0, vf (Z) = vf , and
af (Z) = af and

χZ(s) =
s

s−M2
Z + iΓZMZ

, (4.50)

χγ(s) = 1 . (4.51)

With these conventions, the Born cross section becomes

dσBorn(s)
dc

=
πα2Ncβ

2s

×
[
V (s, s)(2 − β2 + c2β2) + 2cβA(s, s)

− 1 − β2
2

C(s, s)
]
. (4.52)

The cross section for e+e− → tt̄γ subdivides in the
gauge-invariant subsets of initial-state radiation, final-state
radiation and the interference between them. Explicit ex-
pressions for the totally differential cross section may be
found in [37]. The integration over φγ is not too compli-
cated and in fact we could simply use existing tables of
integrals [33,34,37]. This first integration is unaffected by
the cuts discussed and has to be performed with an exact
treatment of both me and mt.

The cross section for initial-state radiation after the
integration over φγ is

d3σini
dcds′dV2

=
α3NcQ

2
e

2ss′2

×
{
V (s′, s′)

[
−2
m2

eζ1√
D1

3 (2T
2 − 2Ts′ + s′2 + 2m2

t s
′)

− 2
m2

eζ2√
D2

3 (2U
2 − 2Us′ + s′2 + 2m2

t s
′)

+
2s′

s− s′
(

1√
D1

+
1√
D2

)
×(T 2 − Ts′ + U2 − Us′ + s′2 + 2m2

t s
′)

+
1√
D1

(−2Us′ + ss′ + s′2 + 2m2
t (s+ s

′))

+
1√
D2

(−2Ts′ + ss′ + s′2 + 2m2
t (s+ s

′))

−2s′ − 4m2
t

]

+ A(s′, s′)s′
[
−2
m2

eζ1√
D1

3 (s
′ − 2T ) + 2

m2
eζ2√
D2

3 (s
′ − 2U)

+
2s′

s− s′
(

1√
D1

+
1√
D2

)
(U − T )

− 1√
D1

(s+ s′ − 2U) +
1√
D2

(s+ s′ − 2T )

]

+ C(s′, s′)m2
t

[
2s′m2

e

(
ζ1√
D1

3 +
ζ2√
D2

3

)

− 2s′2

s− s′
(

1√
D1

+
1√
D2

)

−(s+ s′)
(

1√
D1

+
1√
D2

)
+ 2

]}
, (4.53)

with

ζ1,2 =
s− s′
2

(1 ± β0cct) , (4.54)

ct =
V1(s+ s′) − s(s− s′)

(s− s′)√λ2
, (4.55)

β0 =

√
1 − 4m2

e

s
, (4.56)

D1,2 =
1
λ2
C1,2

=
1
λ2

{
1
4

[
2ss′ − (V2 + s′)(s+ s′)
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±cβ0(s− s′)
√
λ2

]2
(4.57)

+4m2
e

[
s′V2(s− s′ − V2) − (s− s′)2m2

t

]}
.

The cross section for final-state radiation after the in-
tegration over φγ is

d3σfin
dcds′dV2

=
α3NcQ

2
f

2s3

×
{
V (s, s)

[
−2m2

t

V 2
1

(−2UT + s2 + 2m2
t s)

− 2m2
t

V 2
2

(−2(UT + Uζ2 + Tζ1 + ζ12) + s2 + 2m2
t s)

× 4m2
t

V1V2

(
U(T + ζ2) + T (U + ζ1) − 2m2

t s
)

− 2s
V1V2

(2UT + tζ2 + Tζ1 + ζ12 − 2s2)

+
s

V1
(V2 − 4m2

t ) +
s

V2
(V1 − 2s− 4m2

t )

]

+ A(s, s)s

[
2m2

t

V 2
1

(T − U) + 2m2
t

V 2
2

(T + ζ2 − U − ζ1)

+
1
V1V2

(s′ − 2m2
t )(2U + ζ1 − 2T − ζ2)

+
U − T
V1

+
U + ζ1 − T − ζ2

V2

]
+ C(s, s)2m2

t (4.58)

×
[
m2

t s

(
1
V 2
1

+
1
V 2
2

)
+

1
V1V2

(ζ12 − ss′ + 2m2
t s)
]}
,

with

ζ12 = ζ1ζ2 − 1
8
(s− s′)2β20(1 − c2)(1 − c2t ). (4.59)

The cross section for the interference between initial-
and final-state radiation after the integration over φγ is

d3σint
dcds′dV2

=
α3NcQeQf

2s2s′

×
{
V (s, s′)

[
1√
D1V1

(s− U)

×(2T 2 − 2Ts′ + s′2 + 2m2
t s

′ − 2UT + s2 − 2m2
t s)

− 1√
D2V1

(s− T )

×(2U2 − 2Us′ + s′2 + 2m2
t s

′ − 2UT + s2 − 2m2
t s)

+
1√
D2V2

(s′ − U)

×(2T 2 − 2Ts+ s2 + 2m2
t s− 2UT + s′2 − 2m2

t s
′)

− 1√
D1V2

(s′ − T )

×(2U2 − 2Us+ s2 + 2m2
t s− 2UT + s′2 − 2m2

t s
′)

+
1
V1

(
(ζ1 − ζ2)s+ (U − T )(3s− s′ − 4m2

t )
)

− 1
V2

(
(ζ1 − ζ2)(s′ + 4m2

t ) + (U − T )(3s′ − s+ 4m2
t )
)

+
(

1√
D2

− 1√
D1

)(
s2 + s′2 + 2m2

t (s+ s
′)
)]

+ A(s, s′)s

[
1√
D1V1

(s− U)[−2Ts′ + s′2 + s(U − T )]

+
1√
D2V1

(s− T )[−2Us′ + s′2 + s(T − U)]

+
1√
D2V2

(s′ − U)[−2Ts+ s2 + s′(U − T )]

+
1√
D1V2

(s′ − T )[−2Us+ s2 + s′(T − U)]

+
1
V1

(
2ss′ + 2m2

t (V2 − 2s)
)

+
1
V2

(−2ss′ + 2m2
t (V1 − 2s)

)
+

1√
D1

(s′T − sU)

+
1√
D2

(s′U − sT ) + 2(s+ s′) + 4m2
t

]
+ C(s, s′)m2

t

×
[
(s+ s′)

(
− 1√

D1V1
(s− U) + 1√

D2V1
(s− T )

− 1√
D2V2

T +
1√
D1V2

U

)

+ (ζ1 − ζ2)
(

1
V2

− 1
V1

)]

+ Ĉ(s, s′)m2
t (s+ s

′)
[
1
V1

+
1
V2

]}
. (4.60)
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4.3 Soft photon corrections

The four-dimensional integration of the bremsstrahlung
contributions is divergent in the soft photon part of the
phase space and is treated in d dimensions. One starts from
a reparameterization of the photonic phase-space part with
Born-like kinematics for the matrix element squared. To
obtain a soft photon contribution we have to take the terms
of the bremsstrahlung amplitude without p0 ≡ Eγ ≤ ω in
the numerators. In this limit, s′ approaches s and the soft
contribution to the differential cross section takes the form

dσsoft

d cos θ
=
α

π
δsoft

dσBorn

d cos θ
, (4.61)

with

δsoft = 4π2
∫

d3p
(2π)32Eγ

×
[
Qe

(
2p4
Z2

− 2p1
Z1

)
+Qt

(
2q2
V1

− 2q3
V2

)]2
θ(ω − Eγ)

=
1
4π

∫
d3p
E3

γ

θ(ω − Eγ)Isoft (4.62)

and

Isoft

4E2
γ

= Q2
e

(
m2

e

Z2
1
+
m2

e

Z2
2

− s− 2m2
e

Z1Z2

)

+ QeQt

(
T

Z1V1
+

T

Z2V2
− U

Z1V2
− U

Z2V1

)

+ Q2
t

(
m2

t

V 2
1

+
m2

t

V 2
2

− s− 2m2
t

V1V2

)
. (4.63)

The scalar products have to be taken according to Born
kinematics, i.e. the expressions (4.6) and (4.7) become

Z1 = 2pp1 = 2Eγ

[
p01 + |p1| cos θp

]
, (4.64)

Z2 = 2pp4 = 2Eγ

[
p04 − |p4| cos θp

]
, (4.65)

V1 = 2pq2 = 2Eγ

[
q02 + |q2| cos θq

]
, (4.66)

V2 = 2pq3 = 2Eγ

[
q03 − |q3| cos θq

]
. (4.67)

From here we see that Isoft is constructed to be indepen-
dent of Eγ . Substitute now, with d = 4 − 2ε, ε < 0,

δsoft → (2πµ)2ε

4π

ω∫
0

E−(1+2ε)
γ dEγ

∫
dΩ(d−2)I

soft

=
1
2

1∫
−1

dξ
[
PIR + ln

ω

µ
+

1
2
ln(1 − ξ2)

]
Isoft.

(4.68)

We introduce the abbreviation for the infrared divergence

PIR = − 1
2ε

+
γE
2

− ln(2
√

π) . (4.69)

The infrared divergence can also be regularized by intro-
ducing a finite photon mass λ:

PIR − lnµ = ln
1
λ
. (4.70)

The last integral over ξ = cos θγ is trivial for the prod-
ucts ZiZj and ViVj , since they contain only one angle;
one may thus identify either ξ = cos θp or ξ = cos θq. In
the initial-final interference, one may introduce a Feynman
parameter

1
ZiVj

=
1
4

1
ppipqj

=
1
4

1∫
0

dα
1

(pkij)2
, (4.71)

with

kij = αpi + (1 − α)qj . (4.72)

Then (pkij)2 = E2
γs(1−βij cos θij)2/4 and we can identify

now ξ = cos θij . Further,

(1 − β12)2 = (1 − β43)2 = (1 − βT )2 (4.73)

=
4
s

[
α(1 − α)T + α2m2

e + (1 − α)2m2
t

]
,

(1 − β13)2 = (1 − β42)2 = (1 − βU )2 (4.74)

=
4
s

[
α(1 − α)U + α2m2

e + (1 − α)2m2
t

]
.

The final result is

δsoft = Q2
eδ

soft
ini +QeQtδ

soft
int +Q2

t δ
soft
fin , (4.75)

with

δsoftini (me, ω, ε, µ)

= 2
(
PIR + ln

2ω
µ

)[
−1 +

s− 2m2
e

sβ0
ln
(
1 + β0
1 − β0

)]

+
1
β0

ln
(
1 + β0
1 − β0

)
− s− 2m2

e

sβ0

[
1
2
ln2
(

2β0
1 − β0

)
+ Li2(1) + Li2

(
β0 − 1
2β0

)
+ Li2

(
2β0
β0 + 1

)]
, (4.76)

δsoftfin (mt, ω, ε, µ) = δsoftini (mt, ω, ε, µ), (4.77)

δsoftint (me,mt, ω, ε, µ) = 2
(
PIR + ln

2ω
µ

)

×
(
T√
λT

ln
T +

√
λT

T − √
λT

− U√
λU

ln
U +

√
λU

U − √
λU

)
+

1
2
[TF(T ) − UF(U)] , (4.78)

and

λT = T 2 − 4m2
em

2
t , (4.79)
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F(T ) = −4
s

1∫
0

dα
1

βT (1 − β2T )
ln

1 + βT
1 − βT , (4.80)

and analogue definitions for T ↔ U . We calculate the
finite interference part given in (4.78) numerically, but
have shown the agreement with (3.64) of [38]:

TF(T ) − UF(U) (4.81)

= −2
[
Li2

(
1 − 1 − β

1 − β cos θ
)
+ Li2

(
1 − 1 + β

1 − β cos θ
)

−Li2

(
1 − 1 − β

1 + β cos θ

)
− Li2

(
1 − 1 + β

1 + β cos θ

)]
.

5 Results

In this section we present the numerical results of the elec-
troweak one-loop calculation to the process e+e− → tt̄. We
have performed a fixed-order α calculation, i.e. no higher-
order corrections such as photon exponentiation have been
taken into account.

For the numerical evaluation we assume the following
input values [18–20]:

ΓZ = 2.49977GeV, α = e2

4π = 1/137.03599976,
Emax

γ =
√
s/105, MW = 80.4514958GeV,

MZ = 91.1867GeV, MH = 120GeV,
me = 0.00051099907GeV, mt = 173.8GeV,
mb = 4.7 GeV, mµ = 0.105658389GeV,
mu = 0.062GeV, md = 0.083GeV ,
mτ = 1.77705GeV, mc = 1.5GeV,
ms = 0.215GeV. (5.1)

Two packages, namely FF [29] and LoopTools [30] have
been used for the numerical evaluation of the loop integrals.

In Fig. 5.1, we present the differential cross section for
various generic values of

√
s.

It can be seen that for rather high center-of-mass en-
ergies the characteristic features of a massive fermion-pair
production become less prominent. At

√
s = 3TeV the

differential cross section of electroweak radiative correc-
tions starts to exhibit collinear mass singularities at the
edges of phase space. Those are cured by applying a cut
on s′. In general it can be seen that the effects of radia-
tive corrections are more dramatic for top pairs produced
close to the direction of the beam. For the TESLA range
of center-of-mass energies, backward scattered top quarks
give rise to slightly larger corrections than forward scat-
tered ones [19]. For higher energies this effect is more or
less washed out.

In Tables 5.1 to 5.3 we present a complete set of form
factors entering the cross-section calculation. The form
factors given correspond to the minimal set of indepen-
dent form factors possible for a two-to-two process with
two massless and two massive fermions in the initial and
final state respectively, and are defined with respect to the

Fig. 5.1. Top-pair production: Differential cross sections in
Born approximation (solid lines), with full electroweak correc-
tions (dashed lines), with an s′ = 0.7s cut (dash-dotted lines);
also we show pure weak corrections (dotted lines, photonic cor-
rections and running of α excluded); all for

√
s = 0.5, 1, 3TeV

Fig. 5.2. Total cross section for top-pair production as a
function of s. Born (solid lines), electroweak (dashed lines),
electroweak with s′ = 0.7s cut (dotted lines) and electroweak
with s′ = 0.7s and cos θ = 0.95 cut (dash-dotted lines)

“naturally” arising form factors in (2.32). For complete-
ness we also give the corresponding Born form factors.
The numerical values given are obtained for a character-
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Table 5.1. Real and imaginary parts of the six independent form factors
F̂ jk

i = e2

s
F̄ jk

i for weak, non-photonic corrections to the process e+e− → tt̄ at√
s = 500 GeV for a fixed scattering angle cos θ = 0.7. For reference we also

give the corresponding Born form factors; ΓZ = 0

f.f. Born weak 1-loop contributions
Re Im Re Im

F̂ 11
1 −2.5092647 10−7 0.0 1.0887486 10−8 −2.5501562 10−9

F̂ 15
1 1.5620010 10−8 0.0 −9.7597976 10−9 −9.0271675 10−9

F̂ 51
1 5.6240013 10−8 0.0 −7.0061422 10−9 −6.3933666 10−9

F̂ 55
1 −1.3747985 10−7 0.0 −1.1156608 10−9 7.8631481 10−9

mt F̂ 11
3 0.0 0.0 8.1443132 10−10 −8.4459100 10−10

mt F̂ 51
3 0.0 0.0 −9.0999772 10−10 4.8860491 10−10

Table 5.2. Same as Table 5.1 for
√

s = 1 TeV

f.f. Born weak 1-loop contributions
Re Im Re Im

F̂ 11
1 −6.2691435 10−8 0.0 5.1307394 10−9 −2.7823854 10−10

F̂ 15
1 3.8067964 10−9 −0.0 −3.7437316 10−9 −2.4452620 10−9

F̂ 51
1 1.3706335 10−8 −0.0 −2.9857994 10−9 −1.8781666 10−9

F̂ 55
1 −3.3505413 10−8 0.0 1.0315050 10−9 2.3503159 10−9

mt F̂ 11
3 0.0 0.0 1.1873053 10−10 −5.7871449 10−11

mt F̂ 51
3 0.0 0.0 −9.7304312 10−11 4.2210241 10−11

Table 5.3. Same as Table 5.1 for
√

s = 3 TeV

f.f. Born weak 1-loop contributions
Re Im Re Im

F̂ 11
1 −6.9644349 10−9 0.0 1.0150142 10−9 5.647132 10−12

F̂ 15
1 4.1984821 10−10 −0.0 −6.7526020 10−10 −3.4235887 10−10

F̂ 51
1 1.5116596 10−9 −0.0 −6.0751559 10−10 −2.6754148 10−10

F̂ 55
1 −3.6952823 10−9 0.0 3.5631722 10−10 3.4972393 10−10

mt F̂ 11
3 0.0 0.0 2.9895163 10−12 −6.6708986 10−13

mt F̂ 51
3 0.0 0.0 −2.4939160 10−12 9.1292861 10−13

istic center-of-mass energy of
√
s = 500GeV and a fixed

scattering angle cos θ = 0.7.
In Fig. 5.2 we present the total integrated cross section

as a function of
√
s. From the previous discussion it is clear

that the effect of radiative corrections is less dramatic in
the total cross section, since the effects above and below
the Born cross section are averaged out.

Finally the forward-backward asymmetry of the total
integrated cross section can serve as a good observable
to determine the effects of radiative corrections. Towards
higher energies, the effects become distinctively.

In summary our calculation shows that for the next
generation of linear colliders with center-of-mass energies
above

√
s = 500GeV, electroweak radiative corrections

modify the differential aswell as the integrated cross section
within the experimental precision of a few per mille. The
package Topfit provides the means to calculate those cor-

rections and allows predictions for various realistic cuts on
the scattering angle as well as on the energy of the photon.

Acknowledgements. J.F. and A.L. would like to thank DESY
Zeuthen for invitations and all authors thank the Heisenberg-
Landau project “New methods of computing massive Feynman
integrals and mass effects in the Standard Model” for financing
visits to Dubna.

A Translation of tensor decompositions

On the left-hand side we give the Passarino-Veltman func-
tions, used in [29], according to the tensor decomposition
of Feynman diagrams with respect to external momenta as
systematically introduced in [31]. On the right-hand side
we follow the corresponding notation in the LoopTools
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Fig. 5.3. Forward-backward asymmetry for top-pair produc-
tion as a function of s. Born (solid lines), electroweak (dashed
lines), electroweak with s′ cut (dotted lines) and electroweak
with s′ = 0.7s and cos θ = 0.95 cut (dash-dotted lines)

package [30], with λ �= 0. There are also sign differences
reflecting different notions of metrics. We have

C0 = −C0 , (A.1)

C11 = −C1 − C2 , (A.2)

C12 = −C2 , (A.3)

C24 = C00 , (A.4)

C21 = −C11 − 2C12 − C22 , (A.5)

C22 = −C22 , (A.6)

C23 = −C12 − C22 , (A.7)

D11 = D1 +D2 +D3 , (A.8)

D12 = D2 +D3 , (A.9)

D13 = D3 , (A.10)

D21 = D11 + 2D12 + 2D13 + 2D23 +D22 +D33, (A.11)

D22 = 2D23 +D22 +D33 , (A.12)

D23 = D33 , (A.13)

D24 = D12 +D13 + 2D23 +D22 +D33 , (A.14)

D25 = D13 +D23 +D33 , (A.15)

D26 = D23 +D33 , (A.16)

D27 = −D00 . (A.17)

B Renormalization

A detailed formulation of the renormalization of fermion-
pair production can be found in various textbooks, e.g.
[39]. To complete the documentation of our calculation we
present some relations resulting from the application of an
on-mass-shell renormalization, closely following [32]. They
had been used to derive the formulae given in Sect. 3.

After the renormalization of the boson self-energies: we
have to use the following expressions:

Σ ren
Z (p2) = ΣZ(p2) − ReΣZ(MZ

2) ≡ ΣZ(p2) − δMZ
2,

(B.1)

Σ ren
γ (p2) = Σγ(p2) , (B.2)

Σ ren
γZ (p2) = ΣγZ(p2) . (B.3)

The divergent parts of these renormalized self-energies
were given in (3.7). For the mixing angle renormalization
ReΣZ(MZ

2) = δMZ
2 and ReΣW (MW

2) = δMW
2 are

needed:

δsin2 θW = cos2 θW

(
δMZ

2

M2
Z

− δMW
2

MW
2

)
. (B.4)

Among the free parameters of the theory we have only one
coupling constant e, using

gsin θW = g′cos θW = e =
√
4πα em(0) . (B.5)

The electric charge renormalization differs in pure QED
and electroweak theory:

e2, ren = 4πα em(0)
(
1 + 2

δe
e

)
, (B.6)

δe
e

QED

= −1
2

δZγ =
1
2
∂

∂p2
Σγ(p2)

∣∣∣∣
p2=0

, (B.7)

δe
e

weak

=
1
2
∂

∂p2
Σγ(p2)

∣∣∣∣
p2=0

− sin θW
cos θW

ΣZγ(0)
MZ

2 .

(B.8)

The wave-function renormalization factor Zf is obtained
from the fermion self-energy Σf , with

Σf (p) = A(p2) +B(p2) (p/−mf ) + C(p2) p/γ5.

(B.9)

The resulting Z factor is

Zf = 1 + za,f + zb,fγ5 (B.10)

= 1 +B(m2
f ) + 2mfA

′(p2)|m2
f
+ C(m2

f )γ5.

For QED, the axial terms vanish, of course. Explicitly, the
UV-divergent parts are given by

z UVa,f = − e2

sin2 θW

1
ε

(
3
8
m2

f

MW
2 +

1
8
m2

f ′

MW
2

)
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−e2 1
ε
(Q2

f + a2f + v2f ) , (B.11)

z UVb,f = − e2

sin2 θW

1
ε

(
−1
4
+

1
8
m2

f

MW
2 − 1

8
m2

f ′

MW
2

)

+e2
1
ε
(2 af vf ) , (B.12)

δeweak ,UV

e
= e2

11
6
1
ε
, (B.13)

δsin2 θW
UV

= e2
(
41
6

− 21
2
cos2 θW +

11
3
cos4 θW

)
1

sin2 θW

1
ε

= e2
(
41
6

− 11
3
cos2 θW

)
1
ε
, (B.14)

with f ′ denoting the isospin partner of f .
The above relations define the complete renormaliza-

tion procedure needed for our reaction. A vertex renormal-
ization, e.g. resulting from terms such as eΨ̄γµAµΨ in the
Lagrangian, traces back to δe and Zf . Explicit formulae
may be found in the Fortran code [17].

C Infrared divergences

The conventions of the one-loop functions and related ones
are those used in the package LoopTools [30]. In particular
the normalization of the one-loop integration is used as in
the following simplest example:

A0(m2) =
(2πµ)4−d

iπ2

∫
ddk

k2 −m2

= −(4πµ2)2− d
2

1

(m2)1− d
2
Γ

(
1 − d

2

)
(C.1)

= m2
[
1 − ln

m2

µ2
+

1
ε

− γE + ln(4π)
]
+ O(ε).

In the Fortran program, we leave the treatment of IR
divergences to the packages used for the calculation of one-
loop integrals. Additionally, we checked analytically their
cancellation. For this purpose, we isolated them in the few
IR-divergent scalar integrals contributing to the process
e+e− → tt̄.

One-loop infrared divergences are due to the exchange
of a photon between two massive particles, which occur
also as external (on-shell) ones.

Wave-function renormalization yields IR-divergent
contributionsDB0 andDB1, the on-mass-shell derivatives
of B0 and B1 (with respect to the external momentum
squared). From5 With the representation

B1(p2;m2
1,m

2
2)

5 In FF, there is no DB1 foreseen, while in LoopTools this
function was numerically unstable for λ �= 0. This might be
improved now

=
1
2p2
[
(m2

2 −m2
1 − p2)B0(p2,m2

1,m
2
2)

+A0(m2
1) −A0(m2

2)
]

(C.2)

one arrives at

DB1(m2;m2, 0) ≡ ∂

∂p2
B1(p2;m2, 0)

∣∣∣∣
p2=m2

=
1

2m4

[−A0(m2) +m2B0(m2;m2, 0)

−2m4DB0(p2;m2, 0)
∣∣
p2=m2

]
. (C.3)

The UV divergences cancel at the right-hand side and the
IR divergence is traced back to DB0. We mention for com-
pleteness that the similar function

DB1
(
m2; 0,m2)≡ ∂

∂p2
B1
(
p2 = m2; 0,m2)

=
[
A0
(
m2)−m2B0

(
m2; 0,m2)]/(2m4) ,

arising from the charged current self-energy with a mass-
less neutrino, is finite.

An explicit calculation gives

DB0(p2;m2, 0)
∣∣
p2=m2

=
1

(m2)3−d/2

Γ (3 − d/2)
(d− 3)(d− 4)

(2
√

πµ)4−d

= −C0(m
2, 0,m2; 0,m2,m2)

d− 3
, (C.4)

C0(m2, 0,m2; 0,m2,m2) 	 − 1
m2 ln

m

λ
. (C.5)

Assigning the loop momentum k to the photon line in
the initial- and final-state vertex diagrams ensures that
the divergent part is exclusively contained in one scalar
three-point function C0 :

C0(m2, s,m2; 0,m2,m2)

=
−1
sβ

{
ln(y)

[
2 ln(1 + y) − 1

2
ln(y) − ln

λ2

m2

]

+
π2

6
+ 2Li2(−y)

}
, (C.6)

with

y ≡ y(s,m,m) =

√
1 − 4m2/s− 1√
1 − 4m2/s+ 1

=
β − 1
β + 1

+ iε . (C.7)

The finite, small photon mass λ is defined according to
(4.70).

Finally, IR-divergent functions from the photonic box
diagrams, D0, Dµ, and Dµν , have to be considered. We
indicate for the direct two-photon box, shown in Fig. C.1,
how the singularities can be isolated.

The key ingredient for this method [31] is the following
identity:
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γγ

ttγγee--

ee--

ee--

tt

tt

+k-q1+k-q1

+k-q2+k-q2
+k-q3+k-q3

+k+k

+p1+p1

+p4+p4

-p2-p2

-p3-p3

Fig. C.1. An infrared-divergent box diagram

D0 ∝∫
d4k

[(k − q1)2 − m2
1][(k − q2)2 − m2

2][(k − q3)2 − m2
3][k2 − m2

4]

=
−1

s−m2
1 −m2

3
×[∫

2(k − q1)(k − q3) d4k

[(k − q1)2 − m2
1][(k − q2)2 − m2

2][(k − q3)2 − m2
3][k2 − m2

4]

− d4k
[(k − q2)2 −m2

2][(k − q3)2 −m2
3][k2 −m2

4]

− d4k

[(k − q1)2 −m2
1][(k − q2)2 −m2

2][k2 −m2
4]

]
. (C.8)

For m1 = m3 = 0, evidently the numerator of the first of
the three terms makes it an IR-finite contribution and the
other two are C0 functions. To demonstrate more explicitly
the procedure we select the above diagram (see Fig. C.1)
and obtain (see also [40])

sD0 ∝

s

∫
d4k

[(k − q1)2][(k − q2)2 −m2
t ][(k − q3)2][k2 −m2

e]

IR−→
∫

d4k
[(k − q2)2 −m2

t ][(k − q3)2][k2 −m2
e]

+
∫

d4k
[(k − q1)2][(k − q2)2 −m2

t ][k2 −m2
e]

IR−→ C0(q22 , (q3 − q2)2, q23 ;m2
e,m

2
t , 0)

+ C0(q21 , (q1 − q2)2, q22 ;m2
e, 0,m

2
t )

= 2C0(t,m2
t ,m

2
e;m

2
e,m

2
t , 0) . (C.9)

Only one scalar function has to be calculated, and in the
limit of vanishing me we find

C0(m2
e, t,m

2
t ; 0,m

2
e,m

2
t )

=
1
T

[
− ln

memt

T
ln

λ2

memt
+ Li2

(
1 − m2

t

T

)

− 1
2
ln
m2

e

T
ln
m2

t

T

]
. (C.10)

From the crossed box diagram, we get another function,
D0, with t in (C.10) replaced by u. When combining virtual

and soft corrections, the singularities of these functions are
cancelled against the divergent parts of (4.78).

The vector and tensor functions may be treated quite
similarly:

sDµ ∝∫
kµ d4k

[(k − q1)2][(k − q2)2 −m2
2][(k − q3)2][k2 −m2

4]

IR−→
∫

[(kµ − q3µ) + q3µ] d4k
[(k − q2)2 −m2

2][(k − q3)2][k2 −m2
4]

+
∫

[kµ − q1µ) + q1µ] d4k
[(k − q1)2][(k − q2)2 −m2

2][k2 −m2
4]

IR−→ (q1µ + q3µ)C0(m2
e, t,m

2
t ; 0,m

2
e,m

2
t ) , (C.11)

sDµν ∝ (C.12)∫
kµkν d4k

[(k − q1)2][(k − q2)2 −m2
2][(k − q3)2][k2 −m2

4]

IR−→ (q1µq1ν + q3µq3ν)C0(m2
e, t,m

2
t ; 0,m

2
e,m

2
t ).

To cross check the result, we isolated the IR-divergent
parts also with another approach, where the tensor inte-
grals are reduced to scalar ones by means of recurrence
relations [41, 42]. The divergent contributions hidden in
the tensor integrals manifest themselves in the form of the
three IR-divergent scalar functions C0 introduced above,
namely (C.5) for self-energies, (C.6) for vertices, and (C.10)
for boxes, correspondingly.
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